Jump to content


Alpha Tester
  • Content Count

  • Joined

  • Last visited

About DdhuAltair

  • Rank

Profile Information

  • Location:
    Back on Earth
  • backer_title
  • Alpha

Recent Profile Visitors

432 profile views
  1. I think it's because near planets, even in space, the atmosphere density is slighlty increasing. From how i see it in the video, it would impact your ship in 2 ways : - 1) atsmosphere density creates a friction force probably proportionial to the velocity or square velocity so it will slow you. But you can't notice it because the atmospheric density meter precision is not enough to see it. I guess the force equation is something like : F=C(d).v or F=C(d).v² where F is the friction force, C a friction coefficient depending of the atmospheric density d (C being an increasing function of d)
  2. I don't have anything against floating constructs but it should require something (energy, anti-gravity generators like you said it or something else). What i meant was that static core units should'nt be some magical stuff that let you built floating structures (and so defying the laws that apply to dynamic core units) without any other requirement.
  3. Yeah i read that after posting. True but I hope it doesn't work that way because it would mean that you could build anything anywhere floating around. So in this case, a space station would be a piece of cake to build which i think should be something hard enough to achieve because it is useful in many ways. And well, i liked the idea of playing with gravity. I'll try to test it tomorrow if i success to build a functionnal ship.
  4. Planet spin will not affect the gravity field. About the use of anti-gravity generators, in my opinion, they use it to solve the problem of space stations. Indeed as it is a building, it will require a static core unit as said in this video where JC also says "don't use that[speaking of the static core units] if you want to build anything that moves" so the velocity of constructions made with a static core unit will be zero from how i understand it. Then a problem arises. How can you make space stations (created from static core units) that requires velocity to stay on a given altitude in pres
  5. To be a bit more accurate, NQ's definition of g is g(r0) from your equation. In NQ's equation, r is reffered as x. The point is to make the gravity field being zero in some points. Then in these points you will no longer "feel" the gravity field and if your velocity is null then you will stay on these points and so you are able to have an orbital "floating" station without needing it to have a velocity (as it's supposed to be built using static cores in the game) on the orbit of a planet. But by doing this you have to put your object very accurately otherwise it will oscillate i
  6. The function seems to describe the variation of the gravity field (unit : m.s-2, just like g) created by an object located at x=0 (probably a planet). x is the radius distance between the planet core and the position where you are. r0 is probably the radius of the planet which creates this field and h the altitude from the sea level of this planet. So r0+h is the distance from the core of the planet and from the graphic, in this case, it values something around 32 (kilometers i guess). In the exponential term, s is a term that indicates how large is the well. a indicates how deep is the w
  7. Well to be exact, mass conservation is not a rule of physics. Nuclear reactions are based on the fact that some mass is lost in the process (it is converted into energy : that's how nuclear plants works). Energy is the only thing which is conservative. But i agree with you. I am against the idea of being able to delete "material" things. It would distord the economy. Even dirt can contribute to the economy because it may cost you (you will have to manage it) or be an income (some people may want to buy it !). Of course, as it has been stated before, i don't think it will have a big
  • Create New...