Jump to content

Resource

Alpha Tester
  • Posts

    20
  • Joined

  • Last visited

Posts posted by Resource

  1. If NQ made decorative items non-destructible ship builders would be more likely to use them to decorate their ships and make them look great. Builders and players avoid decorations because they do not like having to repair dozens (or more) of items all over the ship. Removing destruction from decorative items would negate the need for dynamic properties to be stored on many of the elements considered decorative.

     

    I am proposing this because of the overwhelming support I have received from everyone I've talked to about this.

  2. 11 hours ago, NQ-Pann said:

    Since the Ares Q&A video seemed to be pretty popular, we're planning to do another to answer your questions related to the approaching Demeter update. Please drop them in this thread. 

    SUPER IMPORTANT STUFF PLEASE READ EVEN IF YOU HATE READING (yes, even you): 

    • We politely yet strongly request that you wait until after you've explored the Demeter content on PTS a bit before posing questions. A lot of the information you seek may be discovered through your hands-on gameplay adventures. 
    • Likewise, you should watch the Demeter vlog before asking questions here. Many questions we've seen this week were accompanied by people admitting that they hadn't watched the video.  We know it's long and cannot compete with great videos like this and this, but it's really important stuff. Maybe watch in increments, taking a snack break here and there. (Protip: The segment with Deckard pairs well with cheesy poofs.)
    • We will only answer Demeter-related questions. 

     

    Thanks in advance for your participation and what I'm sure will be superamazingbangerangadelic questions. 

     

    @NQPann and & @NQDeckard:

     

    The element collision changes modified the collision boxes of existing elements. This will cause ship builders who believed they were building ships that were "as nq intended" and sold ships as "not stacked" to have customers come to them reporting that the element list is showing stacked elements. Compounding the problem is that it only reports the type of element that is now "stacked" without giving any visual indicator as to which specific element is considered "stacked". You have told us it's your intention to disable elements considered stacked.

     

    Additionally you are changing brakes so the tops have to be exposed to the outside of the ship (without actually changing the indicating visual that shows the leading edge as the impacted portion that needs to be exposed). This change will cause most ships in the game to become obsolete without major changes. 

     

    These two changes are game breaking. Why are you pushing two game breaking changes while also fundamentally changing how resources are allocated, collected, and imposing a 1m per week tax per territory on every player in the game? This feels like the kind of upset I heard from my friends who no longer play the game before the .23 patch went live. Please explain why this is necessary and how you are going to keep this from becoming another exodus.

  3. Just update your unit > start() with this code for a better looking map:

     

    image.thumb.png.65da9fc3601866fd019e62cb2c672870.png

    function Atlas()
            return {
        [0] = {
          [1]={
            GM=6930729684,
            bodyId=1,
            center={x=17465536.000,y=22665536.000,z=-34464.000},
            name='Madis',
            planetarySystemId=0,
            radius=44300
          },
          [2]={
            GM=157470826617,
            bodyId=2,
            center={x=-8.000,y=-8.000,z=-126303.000},
            name='Alioth',
            planetarySystemId=0,
            radius=126068
          },
          [3]={
            GM=11776905000,
            bodyId=3,
            center={x=29165536.000,y=10865536.000,z=65536.000},
            name='Thades',
            planetarySystemId=0,
            radius=49000
          },
          [4]={
            GM=14893847582,
            bodyId=4,
            center={x=-13234464.000,y=55765536.000,z=465536.000},
            name='Talemai',
            planetarySystemId=0,
            radius=57450
          },
          [5]={
            GM=16951680000,
            bodyId=5,
            center={x=-43534464.000,y=22565536.000,z=-48934464.000},
            name='Feli',
            planetarySystemId=0,
            radius=60000
          },
          [6]={
            GM=10502547741,
            bodyId=6,
            center={x=52765536.000,y=27165538.000,z=52065535.000},
            name='Sicari',
            planetarySystemId=0,
            radius=51100
          },
          [7]={
            GM=13033380591,
            bodyId=7,
            center={x=58665538.000,y=29665535.000,z=58165535.000},
            name='Sinnen',
            planetarySystemId=0,
            radius=54950
          },
          [8]={
            GM=18477723600,
            bodyId=8,
            center={x=80865538.000,y=54665536.000,z=-934463.940},
            name='Teoma',
            planetarySystemId=0,
            radius=62000
          },
          [9]={
            GM=18606274330,
            bodyId=9,
            center={x=-94134462.000,y=12765534.000,z=-3634464.000},
            name='Jago',
            planetarySystemId=0,
            radius=61590
          },
          [10]={
            GM=78480000,
            bodyId=10,
            center={x=17448118.224,y=22966846.286,z=143078.820},
            name='Madis Moon 1',
            planetarySystemId=0,
            radius=10000
          },
          [11]={
            GM=237402000,
            bodyId=11,
            center={x=17194626.000,y=22243633.880,z=-214962.810},
            name='Madis Moon 2',
            planetarySystemId=0,
            radius=11000
          },
          [12]={
            GM=265046609,
            bodyId=12,
            center={x=17520614.000,y=22184730.000,z=-309989.990},
            name='Madis Moon 3',
            planetarySystemId=0,
            radius=15005
          },
          [21]={
            GM=2118960000,
            bodyId=21,
            center={x=457933.000,y=-1509011.000,z=115524.000},
            name='Alioth Moon 1',
            planetarySystemId=0,
            radius=30000
          },
          [22]={
            GM=2165833514,
            bodyId=22,
            center={x=-1692694.000,y=729681.000,z=-411464.000},
            name='Alioth Moon 4',
            planetarySystemId=0,
            radius=30330
          },
          [26]={
            GM=68234043600,
            bodyId=26,
            center={x=-1404835.000,y=562655.000,z=-285074.000},
            name='Sanctuary',
            planetarySystemId=0,
            radius=83400
          },
          [30]={
            GM=211564034,
            bodyId=30,
            center={x=29214402.000,y=10907080.695,z=433858.200},
            name='Thades Moon 1',
            planetarySystemId=0,
            radius=14002
          },
          [31]={
            GM=264870000,
            bodyId=31,
            center={x=29404193.000,y=10432768.000,z=19554.131},
            name='Thades Moon 2',
            planetarySystemId=0,
            radius=15000
          },
          [40]={
            GM=141264000,
            bodyId=40,
            center={x=-13503090.000,y=55594325.000,z=769838.640},
            name='Talemai Moon 2',
            planetarySystemId=0,
            radius=12000
          },
          [41]={
            GM=106830900,
            bodyId=41,
            center={x=-12800515.000,y=55700259.000,z=325207.840},
            name='Talemai Moon 3',
            planetarySystemId=0,
            radius=11000
          },
          [42]={
            GM=264870000,
            bodyId=42,
            center={x=-13058408.000,y=55781856.000,z=740177.760},
            name='Talemai Moon 1',
            planetarySystemId=0,
            radius=15000
          },
          [50]={
            GM=499917600,
            bodyId=50,
            center={x=-43902841.780,y=22261034.700,z=-48862386.000},
            name='Feli Moon 1',
            planetarySystemId=0,
            radius=14000
          },
          [70]={
            GM=396912600,
            bodyId=70,
            center={x=58969616.000,y=29797945.000,z=57969449.000},
            name='Sinnen Moon 1',
            planetarySystemId=0,
            radius=17000
          },
          [100]={
            GM=13975172474,
            bodyId=100,
            center={x=98865536.000,y=-13534464.000,z=-934461.990},
            name='Lacobus',
            planetarySystemId=0,
            radius=55650
          },
          [101]={
            GM=264870000,
            bodyId=101,
            center={x=98905288.170,y=-13950921.100,z=-647589.530},
            name='Lacobus Moon 3',
            planetarySystemId=0,
            radius=15000
          },
          [102]={
            GM=444981600,
            bodyId=102,
            center={x=99180968.000,y=-13783862.000,z=-926156.400},
            name='Lacobus Moon 1',
            planetarySystemId=0,
            radius=18000
          },
          [103]={
            GM=211503600,
            bodyId=103,
            center={x=99250052.000,y=-13629215.000,z=-1059341.400},
            name='Lacobus Moon 2',
            planetarySystemId=0,
            radius=14000
          },
          [110]={
            GM=9204742375,
            bodyId=110,
            center={x=14165536.000,y=-85634465.000,z=-934464.300},
            name='Symeon',
            planetarySystemId=0,
            radius=49050
          },
          [120]={
            GM=7135606629,
            bodyId=120,
            center={x=2865536.700,y=-99034464.000,z=-934462.020},
            name='Ion',
            planetarySystemId=0,
            radius=44950
          },
          [121]={
            GM=106830900,
            bodyId=121,
            center={x=2472916.800,y=-99133747.000,z=-1133582.800},
            name='Ion Moon 1',
            planetarySystemId=0,
            radius=11000
          },
          [122]={
            GM=176580000,
            bodyId=122,
            center={x=2995424.500,y=-99275010.000,z=-1378480.700},
            name='Ion Moon 2',
            planetarySystemId=0,
            radius=15000
          }
         }
        }
        end
    function PlanetRef()
    --[[
      Provide coordinate transforms and access to kinematic related parameters
      Author: JayleBreak
      Usage (unit.start):
      PlanetaryReference = require('planetref')
      galaxyReference = PlanetaryReference(referenceTableSource)
      helios = galaxyReference[0] -- PlanetaryReference.PlanetarySystem instance
      alioth = helios[2]          -- PlanetaryReference.BodyParameters instance
      Methods:
        PlanetaryReference:getPlanetarySystem - based on planetary system ID.
        PlanetaryReference.isMapPosition - 'true' if an instance of 'MapPosition'
        PlanetaryReference.createBodyParameters - for entry into reference table
        PlanetaryReference.BodyParameters - a class containing a body's information.
        PlanetaryReference.MapPosition - a class for map coordinates
        PlanetaryReference.PlanetarySystem - a container for planetary system info.
        PlanetarySystem:castIntersections - from a position in a given direction.
        PlanetarySystem:closestBody - to the specified coordinates.
        PlanetarySystem:convertToBodyIdAndWorldCoordinates - from map coordinates.
        PlanetarySystem:getBodyParameters - from reference table.
        PlanetarySystem:getPlanetarySystemId - for the instance.
        BodyParameters:convertToWorldCoordinates - from map coordinates
        BodyParameters:convertToMapPosition - from world coordinates
        BodyParameters:getAltitude - of world coordinates
        BodyParameters:getDistance - from center to world coordinates
        BodyParameters:getGravity - at a given position in world coordinates.
      Description
      An instance of the 'PlanetaryReference' "class" can contain transform and
      kinematic reference information for all planetary systems in DualUniverse.
      Each planetary system is identified by a numeric identifier. Currently,
      the only planetary system, Helios, has the identifier: zero. This "class"
      supports the indexing ('[]') operation which is equivalent to the
      use of the 'getPlanetarySystem' method. It also supports the 'pairs()'
      method for iterating over planetary systems.
    
      An instance of the 'PlanetarySystem' "class" contains all reference
      information for a specific system. It supports the indexing ('[]') and
      'pairs()' functions which allows iteration over each "body" in the
      system where the key is the numeric body ID. It also supports the
      'tostring()' method.
      An instance of the 'BodyParameters' "class" contains all reference
      information for a single celestial "body" (a moon or planet). It supports
      the 'tostring()' method, and contains the data members:
              planetarySystemId - numeric planetary system ID
              bodyId            - numeric body ID
              radius            - radius of the body in meters (zero altitude)
              center            - world coordinates of the body's center position
              GM                - the gravitation parameter (g = GM/radius^2)
      Note that the user is allowed to add custom fields (e.g. body name), but
      should insure that complex table values have the '__tostring' metamethod
      implemented.
      Transform and Kinematics:
      "World" coordinates is a cartesian coordinate system with an origin at an
      arbitrary fixed point in a planetary system and with distances measured in
      meters. The coordinates are expressible either as a simple table of 3 values
      or an instance of the 'vec3' class.  In either case, the planetary system
      identity is implicit.
      "Map" coordinates is a geographic coordinate system with an origin at the
      center of an identified (by a numeric value) celestial body which is a
      member of an identified (also a numeric value) planetary system. Note that
      the convention that latitude, longitude, and altitude values will be the
      position's x, y, and z world coordinates in the special case of body ID 0.
      The kinematic parameters in the reference data permit calculations of the
      gravitational attraction of the celestial body on other objects.
      Reference Data:
      This is an example of reference data with a single entry assigned to
      planetary system ID 0, and body ID 2 ('Alioth'):
        referenceTable = {
              [0] = { [2] = { planetarySystemId = 0,
                              bodyId = 2,
                              radius = 126068,
                              center = vec3({x=-8, y=-8, z=-126303}),
                              GM = 1.572199+11 } -- as in F=-GMm/r^2
              }
          }
        ref=PlanetaryReference(referenceTable)
      Collecting Reference Data:
      A combination of information from the "Map" screen in the DU user interface,
      and values reported by the DU Lua API can be the source of the reference
      table's data (planetarySystemId, bodyId, and surfaceArea is from the user
      interface):
        referenceTable = {}
        referenceTable[planetarySystemId][bodyId] =
             PlanetaryReference.createBodyParameters(planetarySystemId,
                                                     bodyId,
                                                     surfaceArea,
                                                     core.getConstructWorldPos(),
                                                     core.getWorldVertical(),
                                                     core.getAltitude(),
                                                     core.g())
      Adapting Data Sources:
      Other sources of data can be adapted or converted. An example of adapting a
      table, defined in the file: 'planets.lua', containing information on a single
      planetary system and using celestial body name as the key follows (note that
      a 'name' field is added to the BodyParameters instance transparently after
      construction, and the '__pairs' meta function is required to support the
      'closestBody' and '__tostring' methods):
        ref=PlanetaryReference(
            {[0] = setmetatable(require('planets'),
                            { __index = function(bodies, bodyId)
                                 for _,v in pairs(bodies) do
                                     if v and v.bodyId == bodyId then return v end
                                 end
                                 return nil
                               end,
                             __pairs = function(bodies)
                                 return function(t, k)
                                         local nk, nv = next(t, k)
                                         if nv then
                                             local GM = nv.gravity * nv.radius^2
                                             local bp = BodyParameters(0,
                                                                       nv.id,
                                                                       nv.radius,
                                                                       nv.pos,
                                                                       GM)
                                             bp.name = nk
                                             return nk, bp
                                        end
                                        return nk, nv
                                     end, bodies, nil
                               end })
        })
    
      Converting Data Sources:
      An instance of 'PlanetaryReference' that has been adapted to a data source
      can be used to convert that source to simple table. For example,
      using the adapted instance shown above:
        load('convertedData=' .. tostring(ref))()
        newRef=PlanetaryReference(convertedData)
      Also See: kepler.lua
      ]]--
    --[[                    START OF LOCAL IMPLEMENTATION DETAILS             ]]--
    -- Type checks
    local function isNumber(n)  return type(n)           == 'number' end
    local function isSNumber(n) return type(tonumber(n)) == 'number' end
    local function isTable(t)   return type(t)           == 'table'  end
    local function isString(s)  return type(s)           == 'string' end
    local function isVector(v)  return isTable(v)
                                        and isNumber(v.x and v.y and v.z) end
    local function isMapPosition(m) return isTable(m) and isNumber(m.latitude  and
                                                                   m.longitude and
                                                                   m.altitude  and
                                                                   m.bodyId    and
                                                                   m.systemId) end
    -- Constants
    local deg2rad    = math.pi/180
    local rad2deg    = 180/math.pi
    local epsilon    = 1e-10
    local num        = ' *([+-]?%d+%.?%d*e?[+-]?%d*)'
    local posPattern = '::pos{' .. num .. ',' .. num .. ',' ..  num .. ',' ..
                       num ..  ',' .. num .. '}'
    -- Utilities
    local utils  = require('cpml.utils')
    local vec3   = require('cpml.vec3')
    local clamp  = utils.clamp
    local function float_eq(a,b)
        if a == 0 then return math.abs(b) < 1e-09 end
        if b == 0 then return math.abs(a) < 1e-09 end
        return math.abs(a - b) < math.max(math.abs(a),math.abs(b))*epsilon
    end
    local function formatNumber(n)
        local result = string.gsub(
                        string.reverse(string.format('%.4f',n)),
                        '^0*%.?','')
        return result == '' and '0' or string.reverse(result)
    end
    local function formatValue(obj)
        if isVector(obj) then
            return string.format('{x=%.3f,y=%.3f,z=%.3f}', obj.x, obj.y, obj.z)
        end
        if isTable(obj) and not getmetatable(obj) then
            local list = {}
            local nxt  = next(obj)
            if type(nxt) == 'nil' or nxt == 1 then -- assume this is an array
                list = obj
            else
                for k,v in pairs(obj) do
                    local value = formatValue(v)
                    if type(k) == 'number' then
                        table.insert(list, string.format('[%s]=%s', k, value))
                    else
                        table.insert(list, string.format('%s=%s',   k, value))
                    end
                end
            end
            return string.format('{%s}', table.concat(list, ','))
        end
        if isString(obj) then
            return string.format("'%s'", obj:gsub("'",[[\']]))
        end
        return tostring(obj)
    end
    -- CLASSES
    -- BodyParameters: Attributes of planetary bodies (planets and moons)
    local BodyParameters = {}
    BodyParameters.__index = BodyParameters
    BodyParameters.__tostring =
        function(obj, indent)
            local sep = indent or ''
            local keys = {}
            for k in pairs(obj) do table.insert(keys, k) end
            table.sort(keys)
            local list = {}
            for _, k in ipairs(keys) do
                local value = formatValue(obj[k])
                if type(k) == 'number' then
                    table.insert(list, string.format('[%s]=%s', k, value))
                else
                    table.insert(list, string.format('%s=%s', k, value))
                end
            end
            if indent then
                return string.format('%s%s',
                                     indent,
                                     table.concat(list, ',\n' .. indent))
            end
            return string.format('{%s}', table.concat(list, ','))
        end
    BodyParameters.__eq = function(lhs, rhs)
            return lhs.planetarySystemId == rhs.planetarySystemId and
                   lhs.bodyId            == rhs.bodyId            and
                   float_eq(lhs.radius, rhs.radius)               and
                   float_eq(lhs.center.x, rhs.center.x)           and
                   float_eq(lhs.center.y, rhs.center.y)           and
                   float_eq(lhs.center.z, rhs.center.z)           and
                   float_eq(lhs.GM, rhs.GM)
        end
    local function mkBodyParameters(systemId, bodyId, radius, worldCoordinates, GM)
        -- 'worldCoordinates' can be either table or vec3
        assert(isSNumber(systemId),
               'Argument 1 (planetarySystemId) must be a number:' .. type(systemId))
        assert(isSNumber(bodyId),
               'Argument 2 (bodyId) must be a number:' .. type(bodyId))
        assert(isSNumber(radius),
               'Argument 3 (radius) must be a number:' .. type(radius))
        assert(isTable(worldCoordinates),
               'Argument 4 (worldCoordinates) must be a array or vec3.' ..
               type(worldCoordinates))
        assert(isSNumber(GM),
               'Argument 5 (GM) must be a number:' .. type(GM))
        return setmetatable({planetarySystemId = tonumber(systemId),
                             bodyId            = tonumber(bodyId),
                             radius            = tonumber(radius),
                             center            = vec3(worldCoordinates),
                             GM                = tonumber(GM) }, BodyParameters)
    end
    -- MapPosition: Geographical coordinates of a point on a planetary body.
    local MapPosition = {}
    MapPosition.__index = MapPosition
    MapPosition.__tostring = function(p)
            return string.format('::pos{%d,%d,%s,%s,%s}',
                                 p.systemId,
                                 p.bodyId,
                                 formatNumber(p.latitude*rad2deg),
                                 formatNumber(p.longitude*rad2deg),
                                 formatNumber(p.altitude))
        end
    MapPosition.__eq       = function(lhs, rhs)
            return lhs.bodyId   == rhs.bodyId              and
                   lhs.systemId == rhs.systemId            and
                   float_eq(lhs.latitude,   rhs.latitude)  and
                   float_eq(lhs.altitude,   rhs.altitude)  and
                   (float_eq(lhs.longitude, rhs.longitude) or
                    float_eq(lhs.latitude, math.pi/2)      or
                    float_eq(lhs.latitude, -math.pi/2))
        end
    -- latitude and longitude are in degrees while altitude is in meters
    local function mkMapPosition(overload, bodyId, latitude, longitude, altitude)
        local systemId = overload -- Id or '::pos{...}' string
        if isString(overload) and not longitude and not altitude and
                                  not bodyId    and not latitude then
            systemId, bodyId, latitude, longitude, altitude =
                                                string.match(overload, posPattern)
            assert(systemId, 'Argument 1 (position string) is malformed.')
        else
            assert(isSNumber(systemId),
                   'Argument 1 (systemId) must be a number:' .. type(systemId))
            assert(isSNumber(bodyId),
                   'Argument 2 (bodyId) must be a number:' .. type(bodyId))
            assert(isSNumber(latitude),
                   'Argument 3 (latitude) must be in degrees:' .. type(latitude))
            assert(isSNumber(longitude),
                   'Argument 4 (longitude) must be in degrees:' .. type(longitude))
            assert(isSNumber(altitude),
                   'Argument 5 (altitude) must be in meters:' .. type(altitude))
        end
        systemId  = tonumber(systemId)
        bodyId    = tonumber(bodyId)
        latitude  = tonumber(latitude)
        longitude = tonumber(longitude)
        altitude  = tonumber(altitude)
        if bodyId == 0 then -- this is a hack to represent points in space
            return setmetatable({latitude  = latitude,
                                 longitude = longitude,
                                 altitude  = altitude,
                                 bodyId    = bodyId,
                                 systemId  = systemId}, MapPosition)
        end
        return setmetatable({latitude  = deg2rad*clamp(latitude, -90, 90),
                             longitude = deg2rad*(longitude % 360),
                             altitude  = altitude,
                             bodyId    = bodyId,
                             systemId  = systemId}, MapPosition)
    end
    -- PlanetarySystem - map body IDs to BodyParameters
    local PlanetarySystem = {}
    PlanetarySystem.__index = PlanetarySystem
    PlanetarySystem.__tostring =
        function (obj, indent)
            local sep = indent and (indent .. '  ' )
            local bdylist = {}
            local keys = {}
            for k in pairs(obj) do table.insert(keys, k) end
            table.sort(keys)
            for _, bi in ipairs(keys) do
                bdy = obj[bi]
                local bdys = BodyParameters.__tostring(bdy, sep)
                if indent then
                    table.insert(bdylist,
                                 string.format('[%s]={\n%s\n%s}',
                                               bi, bdys, indent))
                else
                    table.insert(bdylist, string.format('  [%s]=%s', bi, bdys))
                end
            end
            if indent then
                return string.format('\n%s%s%s',
                                     indent,
                                     table.concat(bdylist, ',\n' .. indent),
                                     indent)
            end
            return string.format('{\n%s\n}', table.concat(bdylist, ',\n'))
        end
    local function mkPlanetarySystem(referenceTable)
        local atlas = {}
        local pid
        for _, v in pairs(referenceTable) do
            local id = v.planetarySystemId
            if type(id) ~= 'number' then
                error('Invalid planetary system ID: ' .. tostring(id))
            elseif pid and id ~= pid then
                error('Mismatch planetary system IDs: ' .. id .. ' and '
                      .. pid)
            end
            local bid = v.bodyId
            if type(bid) ~= 'number' then
                error('Invalid body ID: ' .. tostring(bid))
            elseif atlas[bid] then
                error('Duplicate body ID: ' .. tostring(bid))
            end
            setmetatable(v.center, getmetatable(vec3.unit_x))
            atlas[bid] = setmetatable(v, BodyParameters)
            pid = id
        end
        return setmetatable(atlas, PlanetarySystem)
    end
    -- PlanetaryReference - map planetary system ID to PlanetarySystem
    PlanetaryReference = {}
    local function mkPlanetaryReference(referenceTable)
        return setmetatable({ galaxyAtlas = referenceTable or {} },
                              PlanetaryReference)
    end
    PlanetaryReference.__index        =
        function(t,i)
            if type(i) == 'number' then
                local system = t.galaxyAtlas[i]
                return mkPlanetarySystem(system)
            end
            return rawget(PlanetaryReference, i)
        end
    PlanetaryReference.__pairs        =
        function(obj)
            return  function(t, k)
                        local nk, nv = next(t, k)
                        return nk, nv and mkPlanetarySystem(nv)
                    end, obj.galaxyAtlas, nil
        end
    PlanetaryReference.__tostring     =
        function (obj)
            local pslist = {}
            for _,ps in pairs(obj or {}) do
                local psi = ps:getPlanetarySystemId()
                local pss = PlanetarySystem.__tostring(ps, '    ')
                table.insert(pslist,
                             string.format('  [%s]={%s\n  }', psi, pss))
            end
            return string.format('{\n%s\n}\n', table.concat(pslist,',\n'))
        end
    --[[                       START OF PUBLIC INTERFACE                       ]]--
    -- PlanetaryReference CLASS METHODS:
    --
    -- BodyParameters - create an instance of BodyParameters class
    -- planetarySystemId  [in]: the body's planetary system ID.
    -- bodyId             [in]: the body's ID.
    -- radius             [in]: the radius in meters of the planetary body.
    -- bodyCenter         [in]: the world coordinates of the center (vec3 or table).
    -- GM                 [in]: the body's standard gravitational parameter.
    -- return: an instance of BodyParameters class.
    --
    PlanetaryReference.BodyParameters = mkBodyParameters
    --
    -- MapPosition - create an instance of the MapPosition class
    -- overload [in]: either a planetary system ID or a position string ('::pos...')
    -- bodyId [in]:   (ignored if overload is a position string) the body's ID.
    -- latitude [in]: (ignored if overload is a position string) the latitude.
    -- longitude [in]:(ignored if overload is a position string) the longitude.
    -- altitude [in]: (ignored if overload is a position string) the altitude.
    -- return: the class instance
    --
    PlanetaryReference.MapPosition    = mkMapPosition
    --
    -- PlanetarySystem - create an instance of PlanetarySystem class
    -- referenceData [in]: a table (indexed by bodyId) of body reference info.
    -- return: the class instance
    --
    PlanetaryReference.PlanetarySystem = mkPlanetarySystem
    --
    -- createBodyParameters - create an instance of BodyParameters class
    -- planetarySystemId  [in]: the body's planetary system ID.
    -- bodyId             [in]: the body's ID.
    -- surfaceArea        [in]: the body's surface area in square meters.
    -- aPosition          [in]: world coordinates of a position near the body.
    -- verticalAtPosition [in]: a vector pointing towards the body center.
    -- altitudeAtPosition [in]: the altitude in meters at the position.
    -- gravityAtPosition  [in]: the magnitude of the gravitational acceleration.
    -- return: an instance of BodyParameters class.
    --
    function PlanetaryReference.createBodyParameters(planetarySystemId,
                                                     bodyId,
                                                     surfaceArea,
                                                     aPosition,
                                                     verticalAtPosition,
                                                     altitudeAtPosition,
                                                     gravityAtPosition)
        assert(isSNumber(planetarySystemId),
               'Argument 1 (planetarySystemId) must be a number:' ..
               type(planetarySystemId))
        assert(isSNumber(bodyId),
               'Argument 2 (bodyId) must be a number:' .. type(bodyId))
        assert(isSNumber(surfaceArea),
               'Argument 3 (surfaceArea) must be a number:' .. type(surfaceArea))
        assert(isTable(aPosition),
               'Argument 4 (aPosition) must be an array or vec3:' ..
               type(aPosition))
        assert(isTable(verticalAtPosition),
               'Argument 5 (verticalAtPosition) must be an array or vec3:' ..
               type(verticalAtPosition))
        assert(isSNumber(altitudeAtPosition),
               'Argument 6 (altitude) must be in meters:' ..
               type(altitudeAtPosition))
        assert(isSNumber(gravityAtPosition),
               'Argument 7 (gravityAtPosition) must be number:' ..
               type(gravityAtPosition))
        local radius   = math.sqrt(surfaceArea/4/math.pi)
        local distance = radius + altitudeAtPosition
        local center   = vec3(aPosition) + distance*vec3(verticalAtPosition)
        local GM       = gravityAtPosition * distance * distance
        return mkBodyParameters(planetarySystemId, bodyId, radius, center, GM)
    end
    --
    -- isMapPosition - check for the presence of the 'MapPosition' fields
    -- valueToTest [in]: the value to be checked
    -- return: 'true' if all required fields are present in the input value
    --
    PlanetaryReference.isMapPosition  = isMapPosition
    -- PlanetaryReference INSTANCE METHODS:
    --
    -- getPlanetarySystem - get the planetary system using ID or MapPosition as key
    -- overload [in]: either the planetary system ID or a MapPosition that has it.
    -- return: instance of 'PlanetarySystem' class or nil on error
    --
    function PlanetaryReference:getPlanetarySystem(overload)
        --if galaxyAtlas then
            local planetarySystemId = overload
            if isMapPosition(overload) then
                planetarySystemId = overload.systemId
            end
            if type(planetarySystemId) == 'number' then
                local system = self.galaxyAtlas[i]
                if system then
                    if getmetatable(nv) ~= PlanetarySystem then
                        system = mkPlanetarySystem(system)
                    end
                    return system
                end
            end
        --end
        --return nil
    end
    -- PlanetarySystem INSTANCE METHODS:
    --
    -- castIntersections - Find the closest body that intersects a "ray cast".
    -- origin [in]: the origin of the "ray cast" in world coordinates
    -- direction [in]: the direction of the "ray cast" as a 'vec3' instance.
    -- sizeCalculator [in]: (default: returns 1.05*radius) Returns size given body.
    -- bodyIds[in]: (default: all IDs in system) check only the given IDs.
    -- return: The closest body that blocks the cast or 'nil' if none.
    --
    function PlanetarySystem:castIntersections(origin,
                                               direction,
                                               sizeCalculator,
                                               bodyIds)
        local sizeCalculator = sizeCalculator or
                                function (body) return 1.05*body.radius end
        local candidates = {}
        if bodyIds then
            for _,i in ipairs(bodyIds) do candidates[i] = self[i] end
        else
            bodyIds = {}
            for k,body in pairs(self) do
                table.insert(bodyIds, k)
                candidates[k] = body
            end
        end
        local function compare(b1,b2)
            local v1 = candidates[b1].center - origin
            local v2 = candidates[b2].center - origin
            return v1:len() < v2:len()
        end
        table.sort(bodyIds, compare)
        local dir = direction:normalize()
        for i, id in ipairs(bodyIds) do
            local body   = candidates[id]
            local c_oV3  = body.center - origin
            local radius = sizeCalculator(body)
            local dot    = c_oV3:dot(dir)
            local desc   = dot^2 - (c_oV3:len2() - radius^2)
            if desc >= 0 then
                local root     = math.sqrt(desc)
                local farSide  = dot + root
                local nearSide = dot - root
                if nearSide > 0 then
                    return body, farSide, nearSide
                elseif farSide > 0 then
                    return body, farSide, nil
                end
            end
        end
        return nil, nil, nil
    end
    --
    -- closestBody - find the closest body to a given set of world coordinates
    -- coordinates       [in]: the world coordinates of position in space
    -- return: an instance of the BodyParameters object closest to 'coordinates'
    --
    function PlanetarySystem:closestBody(coordinates)
        assert(type(coordinates) == 'table', 'Invalid coordinates.')
        local minDistance2, body
        local coord = vec3(coordinates)
        for _,params in pairs(self) do
            local distance2 = (params.center - coord):len2()
            if not body or distance2 < minDistance2 then
                body         = params
                minDistance2 = distance2
            end
        end
        return body
    end
    --
    -- convertToBodyIdAndWorldCoordinates - map to body Id and world coordinates
    -- overload [in]: an instance of MapPosition or a position string ('::pos...)
    -- return: a vec3 instance containing the world coordinates or 'nil' on error.
    --
    function PlanetarySystem:convertToBodyIdAndWorldCoordinates(overload)
        local mapPosition = overload
        if isString(overload) then
            mapPosition = mkMapPosition(overload)
        end
        if mapPosition.bodyId == 0 then
            return 0, vec3(mapPosition.latitude,
                           mapPosition.longitude,
                           mapPosition.altitude)
        end
        local params = self:getBodyParameters(mapPosition)
        if params then
            return mapPosition.bodyId,
                   params:convertToWorldCoordinates(mapPosition)
        end
    end
    --
    -- getBodyParameters - get or create an instance of BodyParameters class
    -- overload [in]: either an instance of MapPosition or a body's ID.
    -- return: a BodyParameters instance or 'nil' if body ID is not found.
    --
    function PlanetarySystem:getBodyParameters(overload)
        local bodyId = overload
        if isMapPosition(overload) then
            bodyId = overload.bodyId
        end
        assert(isSNumber(bodyId),
                   'Argument 1 (bodyId) must be a number:' .. type(bodyId))
        return self[bodyId]
    end
    --
    -- getPlanetarySystemId - get the planetary system ID for this instance
    -- return: the planetary system ID or nil if no planets are in the system.
    --
    function PlanetarySystem:getPlanetarySystemId()
        local k, v = next(self)
        return v and v.planetarySystemId
    end
    -- BodyParameters INSTANCE METHODS:
    --
    -- convertToMapPosition - create an instance of MapPosition from coordinates
    -- worldCoordinates [in]: the world coordinates of the map position.
    -- return: an instance of MapPosition class
    --
    function BodyParameters:convertToMapPosition(worldCoordinates)
        assert(isTable(worldCoordinates),
               'Argument 1 (worldCoordinates) must be an array or vec3:' ..
               type(worldCoordinates))
        local worldVec  = vec3(worldCoordinates)
        if self.bodyId == 0 then
            return setmetatable({latitude  = worldVec.x,
                                 longitude = worldVec.y,
                                 altitude  = worldVec.z,
                                 bodyId    = 0,
                                 systemId  = self.planetarySystemId}, MapPosition)
        end
        local coords    = worldVec - self.center
        local distance  = coords:len()
        local altitude  = distance - self.radius
        local latitude  = 0
        local longitude = 0
        if not float_eq(distance, 0) then
            local phi = math.atan(coords.y, coords.x)
            longitude = phi >= 0 and phi or (2*math.pi + phi)
            latitude  = math.pi/2 - math.acos(coords.z/distance)
        end
        return setmetatable({latitude  = latitude,
                             longitude = longitude,
                             altitude  = altitude,
                             bodyId    = self.bodyId,
                             systemId  = self.planetarySystemId}, MapPosition)
    end
    --
    -- convertToWorldCoordinates - convert a map position to world coordinates
    -- overload [in]: an instance of MapPosition or a position string ('::pos...')
    --
    function BodyParameters:convertToWorldCoordinates(overload)
        local mapPosition = isString(overload) and
                                               mkMapPosition(overload) or overload
        if mapPosition.bodyId == 0 then -- support deep space map position
            return vec3(mapPosition.latitude,
                        mapPosition.longitude,
                        mapPosition.altitude)
        end
        assert(isMapPosition(mapPosition),
               'Argument 1 (mapPosition) is not an instance of "MapPosition".')
        assert(mapPosition.systemId == self.planetarySystemId,
               'Argument 1 (mapPosition) has a different planetary system ID.')
        assert(mapPosition.bodyId == self.bodyId,
               'Argument 1 (mapPosition) has a different planetary body ID.')
        local xproj = math.cos(mapPosition.latitude)
        return self.center + (self.radius + mapPosition.altitude) *
               vec3(xproj*math.cos(mapPosition.longitude),
                    xproj*math.sin(mapPosition.longitude),
                    math.sin(mapPosition.latitude))
    end
    --
    -- getAltitude - calculate the altitude of a point given in world coordinates.
    -- worldCoordinates [in]: the world coordinates of the point.
    -- return: the altitude in meters
    --
    function BodyParameters:getAltitude(worldCoordinates)
        return (vec3(worldCoordinates) - self.center):len() - self.radius
    end
    --
    -- getDistance - calculate the distance to a point given in world coordinates.
    -- worldCoordinates [in]: the world coordinates of the point.
    -- return: the distance in meters
    --
    function BodyParameters:getDistance(worldCoordinates)
        return (vec3(worldCoordinates) - self.center):len()
    end
    --
    -- getGravity - calculate the gravity vector induced by the body.
    -- worldCoordinates [in]: the world coordinates of the point.
    -- return: the gravity vector in meter/seconds^2
    --
    function BodyParameters:getGravity(worldCoordinates)
        local radial = self.center - vec3(worldCoordinates) -- directed towards body
        local len2   = radial:len2()
        return (self.GM/len2) * radial/math.sqrt(len2)
    end
    -- end of module
    return setmetatable(PlanetaryReference,
                        { __call = function(_,...)
                                        return mkPlanetaryReference(...)
                                   end })
    end
    function Keplers()
        --[[
      Provides methods for computing orbital information for an object
      Usage:
      Kepler = require('autoconf.custom.kepler')
      alioth = Kepler({ GM=157470826617,
                        bodyId=2,
                        center={x=-8.000,y=-8.000,z=-126303.000},
                        name='Alioth',
                        planetarySystemId=0,
                        radius=126068
                      })
      altitude = 6000
      position = '::pos{0,2,0,0,6000}'
      e, o     = alioth:escapeAndOrbitalSpeed(altitude)
      orbit    = alioth:orbitalParameters(position, {0, o+1, 0})
      print("Eccentricity " .. orbit.eccentricity)
      print("Perihelion " .. orbit.periapsis.altitude)
      print("Max. speed " .. orbit.periapsis.speed)
      print("Circular orbit speed " .. orbit.periapsis.circularOrbitSpeed)
      print("Aphelion "  .. orbit.apoapsis.altitude)
      print("Min. speed " .. orbit.apoapsis.speed)
      print("Orbital period " .. orbit.period)
      --- output:
        Eccentricity 0.0018324307017878
        Perihelion 6000.0
        Max. speed 1092.9462297033
        Circular orbit speed 1091.9462297033
        Aphelion 6484.8994605062
        Min. speed 1088.9480596194
        Orbital period 762.02818214049
      Methods:
        Kepler:escapeAndOrbitalSpeed - for a given celestial body and altitude.
        Kepler:orbitalParameters - for a given massless object and a celestial body.
      Description
      The motion of an object in the vicinity of substantially larger mass is
      in the domain of the "2-body problem". By assuming the object whose motion
      is of interest is of negligable mass simplifies the calculations of:
      the speed to escape the body, the speed of a circular orbit, and the
      parameters defining the orbit of the object (or the lack of orbit as the
      case may be).
      Orbital Parameters:
         periapsis - the closest approach to the planet
          apoapsis - the furthest point from the planet if in orbit (otherwise nil)
      eccentricity - 0 for circular orbits
                    <1 for elliptical orbits
                     1 for parabiolic trajectory
                    >1 for hyperbolic trajectory
            period - time (in seconds) to complete an orbit
      Also See: planetref.lua
    ]]--
    local vec3       = require('cpml.vec3')
    local PlanetRef  = PlanetRef()
    local function isString(s) return type(s)   == 'string' end
    local function isTable(t)  return type(t)   == 'table'  end
    local function float_eq(a,b)
        if a == 0 then return math.abs(b) < 1e-09 end
        if b == 0 then return math.abs(a) < 1e-09 end
        return math.abs(a - b) < math.max(math.abs(a),math.abs(b))*epsilon
    end
    Kepler = {}
    Kepler.__index = Kepler
    --
    -- escapeAndOrbitalSpeed - speed required to escape and for a circular orbit
    -- altitude [in]: the height of the orbit in meters above "sea-level"
    -- return: the speed in m/s needed to escape the celestial body and to orbit it.
    --
    function Kepler:escapeAndOrbitalSpeed(altitude)
        assert(self.body)
        -- P = -GMm/r and KE = mv^2/2 (no lorentz factor used)
        -- mv^2/2 = GMm/r
        -- v^2 = 2GM/r
        -- v = sqrt(2GM/r1)
        local distance = altitude + self.body.radius
        if not float_eq(distance, 0) then
            local orbit = math.sqrt(self.body.GM/distance)
            return math.sqrt(2)*orbit, orbit
        end
        return nil, nil
    end
    --
    -- orbitalParameters: determine the orbital elements for a two-body system.
    -- overload [in]: the world coordinates or map coordinates of a massless object.
    -- velocity [in]: The velocity of the massless point object in m/s.
    -- return: the 6 orbital elements for the massless object.
    --
    function Kepler:orbitalParameters(overload, velocity)
        assert(self.body)
        assert(isTable(overload) or isString(overload))
        assert(isTable(velocity))
        local pos = (isString(overload) or PlanetRef.isMapPosition(overload)) and
                                self.body:convertToWorldCoordinates(overload) or
                    vec3(overload)
        local v   = vec3(velocity)
        local r   = pos - self.body.center
        local v2  = v:len2()
        local d   = r:len()
        local mu  = self.body.GM
        local e   = ((v2 - mu/d)*r - r:dot(v)*v)/mu
        local a   = mu/(2*mu/d - v2)
        local ecc = e:len()
        local dir = e:normalize()
        local pd  = a*(1-ecc)
        local ad  = a*(1+ecc)
        local per = pd*dir + self.body.center
        local apo = ecc <= 1 and -ad*dir + self.body.center or nil
        local trm = math.sqrt(a*mu*(1-ecc*ecc))
        local Period = apo and 2*math.pi*math.sqrt(a^3/mu)
        -- These are great and all, but, I need more.
        local trueAnomaly = math.acos((e:dot(r))/(ecc*d))
        if r:dot(v) < 0 then
            trueAnomaly = -(trueAnomaly - 2*math.pi)
        end
        -- Apparently... cos(EccentricAnomaly) = (cos(trueAnomaly) + eccentricity)/(1 + eccentricity * cos(trueAnomaly))
        local EccentricAnomaly = math.acos((math.cos(trueAnomaly) + ecc)/(1 + ecc * math.cos(trueAnomaly)))
        -- Then.... apparently if this is below 0, we should add 2pi to it
        -- I think also if it's below 0, we're past the apoapsis?
        local timeTau = EccentricAnomaly
        if timeTau < 0 then
            timeTau = timeTau + 2*math.pi
        end
        -- So... time since periapsis...
        -- Is apparently easy if you get mean anomly.  t = M/n where n is mean motion, = 2*pi/Period
    
    
        local MeanAnomaly = timeTau - ecc * math.sin(timeTau)
        local TimeSincePeriapsis = MeanAnomaly/(2*math.pi/Period)
        --system.print(MeanAnomaly .. " - " .. TimeSincePeriapsis .. " - " .. Period .. " - " .. EccentricAnomaly .. " - " .. timeTau .. " - " .. trueAnomaly)
        -- Mean anom is 0 at periapsis, positive before it... and positive after it.
        -- I guess this is why I needed to use timeTau and not EccentricAnomaly here
    
        local TimeToPeriapsis = Period - TimeSincePeriapsis
        local TimeToApoapsis = TimeToPeriapsis + Period/2
        if trueAnomaly - math.pi > 0 then -- TBH I think something's wrong in my formulas because I needed this.
            TimeToPeriapsis = TimeSincePeriapsis
            TimeToApoapsis = TimeToPeriapsis + Period/2
        end
        if TimeToApoapsis > Period then
            TimeToApoapsis = TimeToApoapsis - Period
        end
        return { periapsis       = { position           = per,
                                     speed              = trm/pd,
                                     circularOrbitSpeed = math.sqrt(mu/pd),
                                     altitude           = pd - self.body.radius},
                 apoapsis        = apo and
                                   { position           = apo,
                                     speed              = trm/ad,
                                     circularOrbitSpeed = math.sqrt(mu/ad),
                                     altitude           = ad - self.body.radius},
                 currentVelocity = v,
                 currentPosition = pos,
                 eccentricity    = ecc,
                 period          = Period,
                 eccentricAnomaly = EccentricAnomaly,
                 meanAnomaly = MeanAnomaly,
                 timeToPeriapsis = TimeToPeriapsis,
                 timeToApoapsis = TimeToApoapsis
               }
    end
    
    local function new(bodyParameters)
        local params = PlanetRef.BodyParameters(bodyParameters.planetarySystemId,
                                                bodyParameters.bodyId,
                                                bodyParameters.radius,
                                                bodyParameters.center,
                                                bodyParameters.GM)
        return setmetatable({body = params}, Kepler)
    end
    return setmetatable(Kepler, { __call = function(_,...) return new(...) end })
    end
    function Kinematics()
        --[[
      DualUniverse kinematic equations
      Author: JayleBreak
      Usage (unit.start):
      Kinematics = require('autoconf.custom.kinematics')
      Methods:
       computeAccelerationTime - "relativistic" version of t = (vf - vi)/a
       computeDistanceAndTime - Return distance & time needed to reach final speed.
       computeTravelTime - "relativistic" version of t=(sqrt(2ad+v^2)-v)/a
      Description
      DualUniverse increases the effective mass of constructs as their absolute
      speed increases by using the "lorentz" factor (from relativity) as the scale
      factor.  This results in an upper bound on the absolute speed of constructs
      (excluding "warp" drive) that is set to 30 000 KPH (8 333 MPS). This module
      provides utilities for computing some physical quantities taking this
      scaling into account.
    ]]--
    local Kinematic = {} -- just a namespace
    local C       = 30000000/3600
    local C2      = C*C
    local ITERATIONS = 100 -- iterations over engine "warm-up" period
    local function lorentz(v) return 1/math.sqrt(1 - v*v/C2) end
    --
    -- computeAccelerationTime - "relativistic" version of t = (vf - vi)/a
    -- initial      [in]: initial (positive) speed in meters per second.
    -- acceleration [in]: constant acceleration until 'finalSpeed' is reached.
    -- final        [in]: the speed at the end of the time interval.
    -- return: the time in seconds spent in traversing the distance
    --
    function Kinematic.computeAccelerationTime(initial, acceleration, final)
        -- The low speed limit of following is: t=(vf-vi)/a (from: vf=vi+at)
        local k1 = C*math.asin(initial/C)
        return (C * math.asin(final/C) - k1)/acceleration
    end
    --
    -- computeDistanceAndTime - Return distance & time needed to reach final speed.
    -- initial[in]:     Initial speed in meters per second.
    -- final[in]:       Final speed in meters per second.
    -- restMass[in]:    Mass of the construct at rest in Kg.
    -- thrust[in]:      Engine's maximum thrust in Newtons.
    -- t50[in]:         (default: 0) Time interval to reach 50% thrust in seconds.
    -- brakeThrust[in]: (default: 0) Constant thrust term when braking.
    -- return: Distance (in meters), time (in seconds) required for change.
    --
    function Kinematic.computeDistanceAndTime(initial,
                                              final,
                                              restMass,
                                              thrust,
                                              t50,
                                              brakeThrust)
        -- This function assumes that the applied thrust is colinear with the
        -- velocity. Furthermore, it does not take into account the influence
        -- of gravity, not just in terms of its impact on velocity, but also
        -- its impact on the orientation of thrust relative to velocity.
        -- These factors will introduce (usually) small errors which grow as
        -- the length of the trip increases.
        t50            = t50 or 0
        brakeThrust    = brakeThrust or 0 -- usually zero when accelerating
        local tau0     = lorentz(initial)
        local speedUp  = initial <= final
        local a0       = thrust * (speedUp and 1 or -1)/restMass
        local b0       = -brakeThrust/restMass
        local totA     = a0+b0
        if speedUp and totA <= 0 or not speedUp and totA >= 0 then
            return -1, -1 -- no solution
        end
        local distanceToMax, timeToMax = 0, 0
        -- If, the T50 time is set, then assume engine is at zero thrust and will
        -- reach full thrust in 2*T50 seconds. Thrust curve is given by:
        -- Thrust: F(z)=(a0*(1+sin(z))+2*b0)/2 where z=pi*(t/t50 - 1)/2
        -- Acceleration is given by F(z)/m(z) where m(z) = m/sqrt(1-v^2/c^2)
        -- or v(z)' = (a0*(1+sin(z))+2*b0)*sqrt(1-v(z)^2/c^2)/2
        if a0 ~= 0 and t50 > 0 then
            -- Closed form solution for velocity exists:
            -- v(t) = -c*tan(w)/sqrt(tan(w)^2+1) => w = -asin(v/c)
            -- w=(pi*t*(a0/2+b0)-a0*t50*sin(pi*t/2/t50)+*pi*c*k1)/pi/c
            -- @ t=0, v(0) = vi
            -- pi*c*k1/pi/c = -asin(vi/c)
            -- k1 = asin(vi/c)
            local k1  = math.asin(initial/C)
            local c1  = math.pi*(a0/2+b0)
            local c2  = a0*t50
            local c3  = C*math.pi
            local v = function(t)
                local w  = (c1*t - c2*math.sin(math.pi*t/2/t50) + c3*k1)/c3
                local tan = math.tan(w)
                return C*tan/math.sqrt(tan*tan+1)
            end
            local speedchk = speedUp and function(s) return s >= final end or
                                         function(s) return s <= final end
            timeToMax  = 2*t50
            if speedchk(v(timeToMax)) then
                local lasttime = 0
                while math.abs(timeToMax - lasttime) > 0.5 do
                    local t = (timeToMax + lasttime)/2
                    if speedchk(v(t)) then
                        timeToMax = t
                    else
                        lasttime = t
                    end
                end
            end
            -- There is no closed form solution for distance in this case.
            -- Numerically integrate for time t=0 to t=2*T50 (or less)
            local lastv = initial
            local tinc  = timeToMax/ITERATIONS
            for step = 1, ITERATIONS do
                local speed = v(step*tinc)
                distanceToMax = distanceToMax + (speed+lastv)*tinc/2
                lastv = speed
            end
            if timeToMax < 2*t50 then
                return distanceToMax, timeToMax
            end
            initial     = lastv
        end
        -- At full thrust, acceleration only depends on the Lorentz factor:
        -- v(t)' = (F/m(v)) = a*sqrt(1-v(t)^2/c^2) where a = a0+b0
        -- -> v = c*sin((at+k1)/c)
        -- @ t=0, v=vi: k1 = c*asin(vi/c)
        -- -> t = (c*asin(v/c) - k1)/a
        -- x(t)' = c*sin((at+k1)/c)
        -- x = k2 - c^2 cos((at+k1)/c)/a
        -- @ t=0, x=0: k2 = c^2 * cos(k1/c)/a
        local k1       = C*math.asin(initial/C)
        local time     = (C * math.asin(final/C) - k1)/totA
        local k2       = C2 *math.cos(k1/C)/totA
        local distance = k2 - C2 * math.cos((totA*time + k1)/C)/totA
        return distance+distanceToMax, time+timeToMax
    end
    --
    -- computeTravelTime - "relativistic" version of t=(sqrt(2ad+v^2)-v)/a
    -- initialSpeed [in]: initial (positive) speed in meters per second
    -- acceleration [in]: constant acceleration until 'distance' is traversed
    -- distance [in]: the distance traveled in meters
    -- return: the time in seconds spent in traversing the distance
    --
    function Kinematic.computeTravelTime(initial, acceleration, distance)
        -- The low speed limit of following is: t=(sqrt(2ad+v^2)-v)/a
        -- (from: d=vt+at^2/2)
        if distance == 0 then return 0 end
        if acceleration > 0 then
            local k1       = C*math.asin(initial/C)
            local k2       = C2*math.cos(k1/C)/acceleration
            return (C*math.acos(acceleration*(k2 - distance)/C2) - k1)/acceleration
        end
        assert(initial > 0, 'Acceleration and initial speed are both zero.')
        return distance/initial
    end
    function Kinematic.lorentz(v) return lorentz(v) end
    return Kinematic
    end
    PlanetaryReference = PlanetRef()
    galaxyReference = PlanetaryReference(Atlas())
    Kinematic = Kinematics()
    Kep = Keplers()
    function getDistanceDisplayString(distance)
        local su = distance > 100000
        local result = ""
        if su then
            -- Convert to SU
            result = round(distance/1000/200,1) .. " SU"
        else
            -- Convert to KM
            result = round(distance/1000,1) .. " KM"
        end
    
        return result
    end
    
    PlanetaryReference = PlanetRef()
    galaxyReference = PlanetaryReference(Atlas())
    
    MapScreenButtons = {}
    MapScreenMouseX = 0
    MapScreenMouseY = 0
    MapScreenMouseDown = false
    MapScreenButtonSelected = 0
    local worldPos = vec3(core.getConstructWorldPos())
    local locX = (worldPos.x/400000)
    local locY = (worldPos.y/400000)*(-1)
    local destX = 0
    local destY = 0
    local sudistance = 0
    local loc = vec3(core.getConstructWorldPos())
    local ion = galaxyReference[0][120]  ---uses Atlas functions
    local thades = vec3(29165536.000, 10865536.000, 65536.000)
    local sinnen = vec3(58665536.000, 29665536.000, 58165536.000)
    local alioth = galaxyReference[0][2]    ---uses Atlas functions
    local madis = vec3(17465536.000, 22665536.000, -34464.000)
    local jago = vec3(-94134464.000, 12765536.000, -3634464.000)
    local symeon = vec3(14165536.000, -85634464.000, -934464.000)
    local lacobus = vec3(98865536.000, -13534464.000, -934464.000)
    local teoma = vec3(80865536.000, 54665536.000, -934464.000)
    local feli = vec3(-43534464.000, 22565536.000, -48934464.000)
    local talemai = vec3(-13234464.000, 55765536.000, 465536.000)
    local sicari = vec3(52765536.000, 27165536.000, 52065536.000)
    local distion = math.floor(ion:getDistance(loc)/200000)   ---uses getDistance functions----
    local distthades = string.format("%.2f", math.sqrt((loc.x-thades.x)^2+(loc.y-thades.y)^2+(loc.z-thades.z)^2)/200000)
    local distalioth = math.floor(alioth:getDistance(loc)/200000)   ---uses getDistance functions----
    local distmadis = string.format("%.2f", math.sqrt((loc.x-madis.x)^2+(loc.y-madis.y)^2+(loc.z-madis.z)^2)/200000)
    local distjago = string.format("%.2f", math.sqrt((loc.x-jago.x)^2+(loc.y-jago.y)^2+(loc.z-jago.z)^2)/200000)
    local distlacobus = string.format("%.2f", math.sqrt((loc.x-lacobus.x)^2+(loc.y-lacobus.y)^2+(loc.z-lacobus.z)^2)/200000)
    local distteoma = string.format("%.2f", math.sqrt((loc.x-teoma.x)^2+(loc.y-teoma.y)^2+(loc.z-teoma.z)^2)/200000)
    local distsymeon = string.format("%.2f", math.sqrt((loc.x-symeon.x)^2+(loc.y-symeon.y)^2+(loc.z-symeon.z)^2)/200000)
    local distfeli = string.format("%.2f", math.sqrt((loc.x-feli.x)^2+(loc.y-feli.y)^2+(loc.z-feli.z)^2)/200000)
    local distsinnen = string.format("%.2f", math.sqrt((loc.x-sinnen.x)^2+(loc.y-sinnen.y)^2+(loc.z-sinnen.z)^2)/200000)
    local disttalemai = string.format("%.2f", math.sqrt((loc.x-talemai.x)^2+(loc.y-talemai.y)^2+(loc.z-talemai.z)^2)/200000)
    local distsicari = string.format("%.2f", math.sqrt((loc.x-sicari.x)^2+(loc.y-sicari.y)^2+(loc.z-sicari.z)^2)/200000)
    selection = 0
    
    
          for i = 1,1 do
       local button = {id = ("b"..1), enabled=true, td="<td>", top=2/100, bottom=13/100, left=1/100, right=28/100}
        table.insert(MapScreenButtons, button)
    end
      for i = 2,2 do
       local button = {id = ("b"..2), enabled=true, td="<td>", top=15/100, bottom=26/100, left=1/100, right=30/100}
        table.insert(MapScreenButtons, button)
    end
        for i = 3,3 do
        local button = {id = ("b"..3), enabled=true, td="<td>", top=27/100, bottom=38/100, left=1/100, right=28/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 4,4 do
        local button = {id = ("b"..4), enabled=true, td="<td>", top=39/100, bottom=50/100, left=1/100, right=28/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 5,5 do
        local button = {id = ("b"..5), enabled=true, td="<td>", top=51/100, bottom=62/100, left=1/100, right=28/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 6,6 do
        local button = {id = ("b"..6), enabled=true, td="<td>", top=64/100, bottom=75/100, left=1/100, right=28/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 7,7 do
        local button = {id = ("b"..7), enabled=true, td="<td>", top=2/100, bottom=13/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 8,8 do
        local button = {id = ("b"..8), enabled=true, td="<td>", top=15/100, bottom=26/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 9,9 do
        local button = {id = ("b"..9), enabled=true, td="<td>", top=27/100, bottom=38/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 10,10 do
        local button = {id = ("b"..10), enabled=true, td="<td>", top=39/100, bottom=50/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 11,11 do
        local button = {id = ("b"..11), enabled=true, td="<td>", top=51/100, bottom=62/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 12,12 do
        local button = {id = ("b"..12), enabled=true, td="<td>", top=64/100, bottom=75/100, left=75/100, right=100/100}
          table.insert(MapScreenButtons, button)
    end
        for i = 13,13 do
        local button = {id = ("b"..13), enabled=true, td="<td>", top=90/100, bottom=100/100, left=1/100, right=18/100}
        table.insert(MapScreenButtons, button)
    end
    function evaluateButtons()
      local selected = 0
    
      if #MapScreenButtons >= 1 then
     -- Set button styles
           for i, button in ipairs(MapScreenButtons) do
                if button.left < MapScreenMouseX and MapScreenMouseX < button.right and button.top < MapScreenMouseY and MapScreenMouseY < button.bottom then
                    if MapScreenMouseDown and MapScreenButtonSelected == i then
                    end
                    selected = i
                end
                if not button.enabled then
                end
    
            end
      end
      return selected
    end
    
    function onButtonDown(buttonNo)
      local button = MapScreenButtons[buttonNo]
      if not button or not button.enabled then
    	return
      end
    end
    function onButtonUp(buttonNo)
      local button = MapScreenButtons[buttonNo]
      if not button or not button.enabled then
        return
      end
    function onClick(buttonNo)
      local button = MapScreenButtons[buttonNo]
      if not button or not button.enabled then
        return
      end
    end
    
    
    
      if buttonNo == 1 then
    destX = 0
    destY = 0
    selection = 1
    sudistance = distalioth
      elseif buttonNo == 2 then
    destX = 43
    destY = -56
    selection = 2
    sudistance = distmadis
      elseif buttonNo == 3 then
    destX = 73
    destY = -27
    selection = 3
    sudistance = distthades
      elseif buttonNo == 4 then
    destX = -33
    destY = -139
    selection = 4
    sudistance = disttalemai
      elseif buttonNo == 5 then
    destX = -109
    destY = -56
    selection = 5
    sudistance = distfeli
      elseif buttonNo == 6 then
    destX = 131
    destY = -68
    selection = 6
    sudistance = distsicari
      elseif buttonNo == 7 then
    destX = 35
    destY = 214
    selection = 7
    sudistance = distsymeon
      elseif buttonNo == 8 then
    destX = 146
    destY = -74
    selection = 8
    sudistance = distsinnen
      elseif buttonNo == 9 then
    destX = -235
    destY = -32
    selection = 9
    sudistance = distjago
      elseif buttonNo == 10 then
    destX = 202
    destY = -137
    selection = 10
    sudistance = distteoma
      elseif buttonNo == 11 then
    destX = 7
    destY = 247
    selection = 11
    sudistance = distion
      elseif buttonNo == 12 then
    destX = 247
    destY = 34
    selection = 12
    sudistance = distlacobus
      elseif buttonNo == 13 then
      unit.exit()
      end
    end
    
    
    local floor = math.floor
    local concat = table.concat
    
    local secondsInMinute = 60
    local secondsInHour = secondsInMinute * 60
    local secondsInDay = secondsInHour * 24
    local secondsInYear = 365.2419 * secondsInDay
    
    local minTotalSecondsToShowOnlyYears = secondsInYear * 10
    
    ---@param totalSeconds number
    ---@param maxComponents nil|number
    local function formatTimeWithUnits (totalSeconds, maxComponents)
      maxComponents = maxComponents or 2
    
      local buffer = {}
    
      if totalSeconds < 0 then
        buffer[#buffer + 1] = "-"
        totalSeconds = -totalSeconds
        maxComponents = maxComponents + 1
      end
    
      local showOnlyYears = totalSeconds > minTotalSecondsToShowOnlyYears
    
      local years = floor(totalSeconds / secondsInYear)
      if years > 0 then buffer[#buffer + 1] = years .. "y" end
    
      if #buffer < maxComponents and not showOnlyYears then
        local days = floor(totalSeconds % secondsInYear / secondsInDay)
        if days > 0 then buffer[#buffer + 1] = days .. "d" end
      end
    
      if #buffer < maxComponents and not showOnlyYears then
        local hours = floor(totalSeconds % secondsInDay / secondsInHour)
        if hours > 0 then buffer[#buffer + 1] = hours .. "h" end
      end
    
      if #buffer < maxComponents and not showOnlyYears then
        local minutes = floor(totalSeconds % secondsInHour / secondsInMinute)
        if minutes > 0 then buffer[#buffer + 1] = minutes .. "m" end
      end
    
      if #buffer < maxComponents and not showOnlyYears then
        local seconds = floor(totalSeconds % secondsInMinute)
        if seconds > 0 then buffer[#buffer + 1] = seconds .. "s" end
      end
    
      if #buffer == 0 then return "0s" end
    
      return concat(buffer, " ")
    
    end
    
    
    
    
    function updateScreen()
    
    loc = vec3(core.getConstructWorldPos())
    
    local shipVelocity = vec3(core.getVelocity()):len() * 3.6
    local shipAcceleration = vec3(core.getVelocity()):len() * 3.6
    local time_to_distance = 0
    local display_selection = ""
    
    if selection == 1 then
        alioth = galaxyReference[0][2]    ---uses Atlas functions
        distalioth = math.floor(alioth:getDistance(loc)/200000)   ---uses getDistance functions----
        time_to_distance = distalioth * 200 / shipVelocity
        display_selection = "alioth"
    elseif selection == 2 then
        madis = vec3(17465536.000, 22665536.000, -34464.000)
        distmadis = string.format("%.2f", math.sqrt((loc.x-madis.x)^2+(loc.y-madis.y)^2+(loc.z-madis.z)^2)/200000)
        time_to_distance = distmadis * 200 / shipVelocity
        display_selection = "madis"
    elseif selection == 3 then
        thades = vec3(29165536.000, 10865536.000, 65536.000)
        distthades = string.format("%.2f", math.sqrt((loc.x-thades.x)^2+(loc.y-thades.y)^2+(loc.z-thades.z)^2)/200000)
        time_to_distance = distthades * 200 / shipVelocity
        display_selection = "thades"
    elseif selection == 4 then
        talemai = vec3(-13234464.000, 55765536.000, 465536.000)
        disttalemai = string.format("%.2f", math.sqrt((loc.x-talemai.x)^2+(loc.y-talemai.y)^2+(loc.z-talemai.z)^2)/200000)
        time_to_distance = disttalemai * 200 / shipVelocity
        display_selection = "talemai"
    elseif selection == 5 then
        feli = vec3(-43534464.000, 22565536.000, -48934464.000)
        distfeli = string.format("%.2f", math.sqrt((loc.x-feli.x)^2+(loc.y-feli.y)^2+(loc.z-feli.z)^2)/200000)
        time_to_distance = distfeli * 200 / shipVelocity
        display_selection = "feli"
    elseif selection == 6 then
        sicari = vec3(52765536.000, 27165536.000, 52065536.000)
        distsicari = string.format("%.2f", math.sqrt((loc.x-sicari.x)^2+(loc.y-sicari.y)^2+(loc.z-sicari.z)^2)/200000)
        time_to_distance = distsicari * 200 / shipVelocity
        display_selection = "sicari"
    elseif selection == 7 then
        symeon = vec3(14165536.000, -85634464.000, -934464.000)
        distsymeon = string.format("%.2f", math.sqrt((loc.x-symeon.x)^2+(loc.y-symeon.y)^2+(loc.z-symeon.z)^2)/200000)
        time_to_distance = distsymeon * 200 / shipVelocity
        display_selection = "symeon"
    elseif selection == 8 then
        sinnen = vec3(58665536.000, 29665536.000, 58165536.000)
        distsinnen = string.format("%.2f", math.sqrt((loc.x-sinnen.x)^2+(loc.y-sinnen.y)^2+(loc.z-sinnen.z)^2)/200000)
        time_to_distance = distsinnen * 200 / shipVelocity
        display_selection = "sinnen"
    elseif selection == 9 then
        jago = vec3(-94134464.000, 12765536.000, -3634464.000)
        distjago = string.format("%.2f", math.sqrt((loc.x-jago.x)^2+(loc.y-jago.y)^2+(loc.z-jago.z)^2)/200000)
        time_to_distance = distjago * 200 / shipVelocity
        display_selection = "jago"
    elseif selection == 10 then
        teoma = vec3(80865536.000, 54665536.000, -934464.000)
        distteoma = string.format("%.2f", math.sqrt((loc.x-teoma.x)^2+(loc.y-teoma.y)^2+(loc.z-teoma.z)^2)/200000)
        time_to_distance = distteoma * 200 / shipVelocity
        display_selection = "teoma"
    elseif selection == 11 then
        ion = galaxyReference[0][120]  ---uses Atlas functions
        distion = math.floor(ion:getDistance(loc)/200000)   ---uses getDistance functions----
        time_to_distance = distion * 200 / shipVelocity
        display_selection = "ion"
    elseif selection == 12 then
        lacobus = vec3(98865536.000, -13534464.000, -934464.000)
        distlacobus = string.format("%.2f", math.sqrt((loc.x-lacobus.x)^2+(loc.y-lacobus.y)^2+(loc.z-lacobus.z)^2)/200000)
        time_to_distance = distlacobus * 200 / shipVelocity
        display_selection = "lacobus"
    else
        time_to_distance = sudistance * 200 / shipVelocity
        display_selection = "none"
    end
    shipVelocity = string.format("%.2f", shipVelocity)
    warpmath = math.floor(math.floor(core.getConstructMass()/ 1000)  * sudistance * 0.00025)
    
    time_to_distance_min = time_to_distance * 60
    time_to_distance_min_sec = time_to_distance_min * 60
    
    time_to_distance = formatTimeWithUnits (time_to_distance_min_sec, 3)
    
    html= ([[
    <svg class="bootstrap" viewBox="0 0 1000 970" style="width:100%; height:100%; margin-top:-5em;">
    
    <circle cx="500" cy="500" r="400" stroke="#5a79c8" stroke-width="5" transform=""></circle>
    <circle cx="500" cy="500" r="350" stroke="#5a79c8" stroke-width="5" transform="" stroke-opacity="0.2"></circle>
    <circle cx="500" cy="500" r="300" stroke="#5a79c8" stroke-width="5" transform=""></circle>
    <circle cx="500" cy="500" r="250" stroke="#5a79c8" stroke-width="5" transform="" stroke-opacity="0.2"></circle>
    <circle cx="500" cy="500" r="200" stroke="#5a79c8" stroke-width="5" transform=""></circle>
    <circle cx="500" cy="500" r="150" stroke="#5a79c8" stroke-width="5" transform="" stroke-opacity="0.2"></circle>
    <circle cx="500" cy="500" r="100" stroke="#5a79c8" fill="#5fb7cf" stroke-width="2" transform="" fill-opacity="0.2"></circle>
    <circle cx="500" cy="500" r="50" stroke="#5a79c8" stroke-width="2" transform="" stroke-opacity="0.2"></circle>
    
    <circle cx="500" cy="500" r="20" stroke="#ffdf91" stroke-width="1.5" transform=""></circle>
    <text x="525" y="504" fill="#ffdf91"font-size="15">Helios</text>
    
    <circle cx="-0.00" cy="0" r="10" stroke="black" stroke-width="1" fill="#61a7ff" transform="translate(500,500)"></circle>
    <text x="-95.00" y="25" transform="translate(500,480)" fill="#61a7ff" font-size="20">Alioth</text>
    
    <circle cx="5.41" cy="244.09" r="10" stroke="black" stroke-width="1" fill="#e1e1e1" transform="translate(500,500)"></circle>
    <text x="-30" y="270" transform="translate(480,480)" fill="#e1e1e1" font-size="20">Ion</text>
    
    <circle cx="35.41" cy="214.09" r="10" stroke="black" stroke-width="1" fill="#7c90ff" transform="translate(500,500)"></circle>
    <text x="-62" y="239" transform="translate(500,480)" fill="#7c90ff" font-size="20">Symeon</text>
    
    <circle cx="202.16" cy="-136.66" r="10" stroke="black" stroke-width="1" fill="#bddeff" transform="translate(500,500)"></circle>
    <text x="112" y="-109" transform="translate(500,480)" fill="#bddeff" font-size="20">Teoma</text>
    
    <circle cx="-33.09" cy="-139.41" r="10" stroke="black" stroke-width="1" fill="#cfffdd" transform="translate(500,500)"></circle>
    <text x="-139" y="-112" transform="translate(500,480)" fill="#cfffdd" font-size="20">Talemai</text>
    
    <circle cx="-108.84" cy="-56.41" r="10" stroke="black" stroke-width="1" fill="#c6a668" transform="translate(500,500)"></circle>
    <text x="-164" y="-30" transform="translate(500,480)" fill="#c6a668" font-size="20">Feli</text>
    
    <circle cx="-235.34" cy="-31.91" r="10" stroke="black" stroke-width="1" fill="#8dc0e5" transform="translate(500,500)"></circle>
    <text x="-297" y="-5" transform="translate(500,480)" fill="#8dc0e5" font-size="20">Jago</text>
    
    <circle cx="43.66" cy="-56.66" r="10" stroke="black" stroke-width="1" fill="#8a9fff" transform="translate(500,500)"></circle>
    <text x="-38" y="-28" transform="translate(500,480)" fill="#8a9fff" font-size="20">Madis</text>
    
    <circle cx="72.91" cy="-27.16" r="10" stroke="black" stroke-width="1" fill="#ffaf6a" transform="translate(500,500)"></circle>
    <text x="88" y="-7" transform="translate(500,485)" fill="#ffaf6a" font-size="20">Thades</text>
    
    <circle cx="247.16" cy="33.84" r="10" stroke="black" stroke-width="1" fill="#cacaca" transform="translate(500,500)"></circle>
    <text x="263" y="62" transform="translate(500,480)" fill="#cacaca" font-size="20">Lacobus</text>
    
    <circle cx="-108.84" cy="-56.41" r="10" stroke="black" stroke-width="1" fill="#c6a668" transform="translate(500,500)"></circle>
    <text x="-165.84" y="-30.41" transform="translate(500,480)" fill="#c6a668" font-size="20">Feli</text>
    
    <circle cx="131.91" cy="-67.91" r="10" stroke="black" stroke-width="1" fill="#ffac71" transform="translate(500,500)"></circle>
    <text x="81" y="-40" transform="translate(475,480)" fill="#ffac71" font-size="20">Sicari</text>
    
    <circle cx="146.66" cy="-74.16" r="10" stroke="black" stroke-width="1" fill="#ffa775" transform="translate(500,500)"></circle>
    <text x="146" y="-46" transform="translate(515,480)" fill="#ffa775" font-size="20">Sinnen</text>
    
    
    <line stroke-linecap="undefined" stroke-linejoin="undefined" id="svg_1" y2="]]..destY..[[" x2="]]..destX..[[" y1="]]..locY..[[" x1="]]..locX..[[" transform="translate(500,500)" stroke-width="5" stroke="#ffb400" fill="none"/>
    <circle cx="]]..locX..[[" cy="]]..locY..[[" r="3" stroke="black" stroke-width="1" fill="limegreen" transform="translate(500,500)"></circle>
    <text x="]]..locX..[[" y="]]..locY..[[" transform="translate(500,500)"
    fill="limegreen" font-size= "4.5vh" font-weight= "bold">&nbsp;&nbsp;&nbsp;&nbsp;SHIP POSITION</text>
    </svg>
    <svg class="bootstrap" viewBox="0 0 1024 612" style="width:100%; height:100%">
    
     <g>
      <title>Layer 1</title>
      <g id="svg_12">
        <rect rx="10" id="svg_1" height="50" width="230" y="30" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_3" height="50" width="230" y="105" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_7" height="50" width="230" y="180" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_9" height="50" width="230" y="255" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_10" height="50" width="230" y="330" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_11" height="50" width="230" y="405" x="15" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
       </g>
      <g id="svg_24">
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_8" y="75" x="40" stroke-width="0" fill="black">Alioth  :]]..distalioth..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_14" y="175" x="40" stroke-width="0" fill="black">Madis  :]]..distmadis..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_17" y="275" x="40" stroke-width="0" fill="black">Thades  :]]..distthades..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_20" y="372" x="40" stroke-width="0" fill="black">Talemai  :]]..disttalemai..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_23" y="469" x="40" stroke-width="0" fill="black">Feli  :]]..distfeli..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_26" y="568" x="40" stroke-width="0" fill="black">Sicari  :]]..distsicari..[[ SU</text>
      </g>
      <g id="svg_40">
       <g id="svg_39">
        <rect rx="10" id="svg_33" height="50" width="230" y="30" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_34" height="50" width="230" y="105" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_35" height="50" width="230" y="180" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_36" height="50" width="230" y="255" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_37" height="50" width="230" y="330" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        <rect rx="10" id="svg_38" height="50" width="230" y="405" x="780" stroke-width="4" stroke="#aee4ed" fill="#5fb7cf"/>
        </g>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_25" y="75" x="1007.163642" stroke-width="0" fill="black">Symeon  :]]..distsymeon..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_27" y="175" x="1007.163642" stroke-width="0" fill="black">Sinnen  :]]..distsinnen..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_28" y="275" x="1007.163642" stroke-width="0" fill="black">Jago  :]]..distjago..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_30" y="372" x="1007.163642" stroke-width="0" fill="black">Teoma  :]]..distteoma..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_31" y="469" x="1007.163642" stroke-width="0" fill="black">Ion  :]]..distion..[[ SU</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="568" x="1007.163642" stroke-width="0" fill="black">Lacobus  :]]..distlacobus..[[ SU</text>
    
      </g>
     </g>
      <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="700" x="20" stroke-width="0" fill="#976eb0">Est. Warp Cost: ]]..warpmath..[[</text>
      <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="750" x="20" stroke-width="0" fill="#976eb0">Construct Weight: ]]..math.floor(core.getConstructMass()/ 1000)..[[ tons</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="700" x="500" stroke-width="0" fill="#976eb0">TTD: ]]..time_to_distance..[[ </text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="750" x="500" stroke-width="0" fill="#976eb0">VELOC: ]]..shipVelocity..[[ km/h</text>
       <text stroke="null" transform="matrix(0.7907331239400577,0,0,0.7600725676692406,3.135703637258853,5.731969683147472) " xml:space="preserve" text-anchor="start" font-family="Helvetica, Arial, sans-serif" font-size="30" id="svg_32" y="700" x="900" stroke-width="0" fill="#976eb0">DEST: ]]..display_selection..[[ </text>
    
    </svg>
    
        ]])
    
    screen.setHTML(html)
    --screen2.setHTML(html)
    end
    unit.setTimer("spacemap",.08)


     

  4. Is there somewhere I can find the max number of input and output plugs for a given item whether it be a container hub, container, construction equipment, assembly array, transfer unit, etc?

     

    Thank you for your help!

     

    Resource

×
×
  • Create New...